Nonexistence of finite order solutions of certain second order linear differential equations

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the stability of linear differential equations of second order

The aim of this paper is to investigate the Hyers-Ulam stability of the  linear differential equation$$y''(x)+alpha y'(x)+beta y(x)=f(x)$$in general case, where $yin C^2[a,b],$  $fin C[a,b]$ and $-infty

متن کامل

NON-STANDARD FINITE DIFFERENCE METHOD FOR NUMERICAL SOLUTION OF SECOND ORDER LINEAR FREDHOLM INTEGRO-DIFFERENTIAL EQUATIONS

In this article we have considered a non-standard finite difference method for the solution of second order  Fredholm integro differential equation type initial value problems. The non-standard finite difference method and the composite trapezoidal quadrature method is used to transform the Fredholm integro-differential equation into a system of equations. We have also developed a numerical met...

متن کامل

Iterated Order of Meromorphic Solutions of Certain Higher Order Linear Differential Equations with Meromorphic Coefficients of Finite Iterated Order

In this paper, we investigate the iterated order of meromorphic solutions of homogeneous and nonhomogeneous linear differential equations where the coefficients are meromorphic functions satisfying certain growth conditions. And some estimates of iterated convergence exponent are also given. 2000 Mathematics Subject Classification: 34M10, 30D35

متن کامل

Nonrectifiable Oscillatory Solutions of Second Order Linear Differential Equations

The second order linear differential equation (p(x)y′)′ + q(x)y = 0 , x ∈ (0, x0] is considered, where p, q ∈ C1(0, x0], p(x) > 0, q(x) > 0 for x ∈ (0, x0]. Sufficient conditions are established for every nontrivial solutions to be nonrectifiable oscillatory near x = 0 without the Hartman–Wintner condition.

متن کامل

On Approximate Solutions of Second-Order Linear Partial Differential Equations

In this paper, a Chebyshev polynomial approximation for the solution of second-order partial differential equations with two variables and variable coefficients is given. Also, Chebyshev matrix is introduced. This method is based on taking the truncated Chebyshev expansions of the functions in the partial differential equations. Hence, the result matrix equation can be solved and approximate va...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Kodai Mathematical Journal

سال: 1996

ISSN: 0386-5991

DOI: 10.2996/kmj/1138043654